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Abstract: The problem of sequential estimation of the mean, subject to the loss

defined as the sum of squared error loss and sampling costs, is considered within

the Bayesian framework. It is shown that the sequential procedure, as proposed

by Chow and Yu (1981) in classical non-Bayesian sequential estimation, is, in fact,

asymptotically Bayes for a large class of prior distributions. The proposed pro-

cedure, without using any auxiliary data, is robust in the sense that it does not

depend on the distribution of outcome variables and the prior.
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1. Introduction

Let X1,X2, . . . be independent observations from some population with a
parameter θ. Suppose that θ is itself a random variable having a distribution. It
is desired to estimate a real-valued function m(θ), subject to the loss measured
by the sum of squared error and the sampling costs.

The Bayes sequential estimation problem is to seek an optimal sequential
procedure which includes an optimal stopping rule and a Bayes estimate (i.e. the
posterior mean of m(θ) for squared error loss). There are many papers that dis-
cussed this problem. For example, Chow, Robbins and Siegmund (1971) proved
the existence of optimal stopping rules for a Bayes sequential estimation problem;
Alvo (1977) obtained a lower bound for the Bayes risk of optimal stopping rules
for the one-parameter exponential family; Rasmussen (1980) provided an optimal
stopping time for the problem of estimating the normal mean with unknown vari-
ance and conjugate priors for the mean and variance; Woodroofe (1981) proved
that, in the case of the one-parameter exponential family and conjugate priors,
the asymptotically pointwise optimal rules are asymptotically non-deficient, that
is, the difference between their Bayes risks and the Bayes risk of optimal stop-
ping rules is o(c), where c is the sampling cost per observation; Rehäılia (1984)
extended the result of Woodroofe (1981) to the case of non-conjugate priors. All
these discussions are for the situation that the prior is known.
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When the prior distribution is a conjugate prior with unknown parameters
and when some previously observed auxiliary data are available, parametric em-
pirical Bayes procedures were proposed by Martinsek (1987) for the exponential
and the normal cases, and similar parametric empirical Bayes procedures were
studied by Hwang (1992) for the Bernoulli and Poisson cases. These procedures
were shown to be asymptotically non-deficient. When the prior is completely
unknown, Bickel and Yahav (1968), without using any auxiliary data, proposed,
instead, a sequential procedure which depends on the distribution of X. They
showed that under some undesirably stringent conditions (see pp. 455-456 of
Bickel and Yahav (1968)), the procedure is asymptotically Bayes, that is, the
Bayes risk of the proposed sequential procedure and the Bayes risk of the opti-
mal sequential procedure are asymptotically equivalent.

Suppose that we are in the situation that the unknown mean m(θ) = Eθ(X)
is to be estimated, the prior distribution of θ is unknown, and previous auxiliary
data are not available. It is desirable to establish a more general sequential
procedure which depends on the present data, but not on the distribution of X,
such that it is asymptotically Bayes whatever be the true prior. The plan of this
paper is as follows. In Section 2, for arbitrary distributions, a naive sequential
procedure is proposed and its Bayes risk is shown to be asymptotically not greater
than the Bayes risk of the optimal fixed-sample-size procedure. In Section 3, a
one-parameter exponential family of distributions is studied and the procedure
proposed in Section 2, without using any auxiliary data, is applied to estimate
the mean. The procedure is shown to be asymptotically Bayes for a large class of
prior distributions. The conditions needed here are much simpler than the ones
given in Bickel and Yahav (1968).

We note that the proposed sequential procedure is, in fact, the one commonly
used in classical non-Bayesian sequential estimation problems (see eg. Chow and
Yu (1981)). Therefore, in this paper we have linked the two types of sequential
estimation problems by showing that the naive sequential procedure is in fact
asymptotically Bayes, whatever be the true prior, in the problem of sequential
estimation of the mean subject to the loss defined by the sum of squared error
loss and sampling costs.

2. Bayes Sequential Estimation of the Mean

We consider X,X1,X2, . . . to be a sequence of independent, identically dis-
tributed (i.i.d.) random variables with density fθ with respect to a σ-finite mea-
sure µ, where the parameter θ may be multi-dimensional. Let Eθ denote the
expectation with respect to fθ. Here we treat θ as a realization of a random
variable. We take Θ to be the parameter space and are given a prior distribution
G on Θ. Suppose that we are interested in estimating Eθ(X). Having recorded n
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observations X1, . . . ,Xn, we assume that the loss incurred in estimating Eθ(X)
by δn(X1, . . . ,Xn) is

(δn(X1, . . . ,Xn) − Eθ(X))2 + cn, (2.1)

where c is the cost per unit sample.
Suppose that we adopt the sample mean X̄n as our estimate. For a fixed

sample size n, the corresponding Bayes risk is given by

Rn = E{(X̄n − E(X | θ))2 + cn} = E
(Var (X | θ)

n
+ cn

)
,

where E denotes the expectation with respect to the overall probability measure.
The risk Rn is minimized by taking the sample size n0, which satisfies

[
(
E(Var (X | θ))

c
)

1
2

]
≤ n0 ≤

[
(
E(Var (X | θ))

c
)

1
2

]
+ 1 (2.2)

with [x] denoting the integer part of x. We thus have Rn0 � 2
√

c(E(Var (X |
θ)))

1
2 .
The value of θ under study represents only a single observation from the

distribution G, and a check of validity of G is not possible if no previous auxil-
iary experiments are available. In case the prior distribution G is misspecified,
unknown, or irrelevant to the present θ, the optimal fixed sample size n0 can not
be obtained, and there is no fixed-sample-size procedure that will attain Rn0.
We then wish to find a sequential procedure such that its Bayes risk will not be
greater than Rn0 asymptotically.

Let

tc = inf{n ≥ nc :
1
n

n∑
i=1

(Xi − X̄n)2 < n2c}, (2.3)

where nc is a positive integer, which may depend on c. The inequalities in (2.2)
suggest that the stopping rule tc may be a good candidate and we shall estimate
Eθ(X) by X̄tc . The performance of the sequential procedure (tc, X̄tc) will be
measured by its Bayes risk R(tc, X̄tc). In Theorem 2.1, we show that under some
regularity conditions,

R(tc, X̄tc) = 2
√

cE(Var (X | θ))
1
2 + o(

√
c), as c → 0. (2.4)

It is easy to see that Rn0 ≥ 2
√

cE(Var (X | θ))
1
2 , indicating that the Bayes risk

R(tc, X̄tc) of the sequential procedure (tc, X̄tc) is asymptotically not greater than
the minimum Bayes risk Rn0 of the fixed-sample-size procedure.

The following conditions (A) and (B) will be needed in Lemma 2.2 and
Theorem 2.1.
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Condition (A). There exists a constant α > 0 and θ1, θ2 ∈ Θ such that

sup
θ∈Θ

fθ(x) ≤ O(1)fθ1(x) for all x > α,

sup
θ∈Θ

fθ(x) ≤ O(1)fθ2(x) for all x < −α.

Condition (B). There exist constants 0 < a < b < ∞ such that |E(X|θ)| < b

and Var (X|θ) ∈ (a, b) a.s..

Remark. Conditions (A) and (B) hold in many cases including, for example,
the one-parameter exponential family, the standard Weibull distribution, uniform
distributions whose parameter spaces are one-dimensional bounded and closed
intervals, and normal distributions with unknown means and variances whose
parameter spaces are two-dimensional bounded and closed intervals.

Theorem 2.1. Under conditions (A) and (B), if E|X|3p < ∞ for some p > 1,
and δc−1/4 ≤ nc = o(c−1/2) for some δ > 0, then (2.4) holds.

Remark. This theorem tells us that the procedure (tc, X̄tc) proposed in Chow-
Yu (1981) is not only risk efficient from the frequentist point of view, but also
risk efficient from the Bayesian point of view for general prior distributions.

In order to prove Theorem 2.1, we first develop some lemmas concerning
uniform integrability.

Lemma 2.1. If E|X|p < ∞ for some p > 2 and nc≤O(c−1/2), then {(√ctc)p, c >

0} is dominated by an integrable random variable.

Lemma 2.2. Under conditions (A) and (B), if δc−1/4 ≤ nc for some δ > 0, then
for any p > 0, {(√ctc)−p, c > 0} is uniformly integrable.

The following lemma is a Bayesian version of Lemma 5 of Chow and Yu
(1981).

Lemma 2.3. Let {sc, c > 0} be a family of σ(θ,X1, . . . ,Xn)-stopping times such
that for some p ≥ 2, b > 1, {(√csc)pb/2, c > 0} is uniformly integrable. Let h be a
measurable function of X and θ. Assume that E|h(X, θ)|pa < ∞ for a > 1 such
that 1

a + 1
b = 1. Then {|c1/4 ∑sc

i=1(h(Xi, θ)−E(h(X, θ)|θ))|p, c > 0} is uniformly
integrable.

Remark. Lemma 2.3 also holds if the filtration σ(θ,X1, . . . ,Xn) is replaced
by a filtration Gn such that σ(θ,X1, . . . ,Xn) ⊂ Gn for each n ≥ 0, and Gn and
σ(Xn+1) are conditionally independent given σ(θ).

With Lemma 2.1-2.3 we can now prove the main theorem. The proofs for
the three lemmas will be given in the Appendix.
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Proof of Theorem 2.1. Let θ and the X ′s be defined on a probability space
(Ω,F , P ). Let PX∼ : B∞ × Ω → [0, 1] be a regular conditional distribution for
X∼ = (X1,X2, . . .) given θ such that for each w ∈ Ω, the coordinate random
variables {ξn, n ≥ 1} in the induced probability space (R∞,B∞, PX∼(·, w)) are
i.i.d..

Let x = (x1, x2, . . .) and define sc = inf{n ≥ nc : 1
n

∑n
i=1(ξi−ξ̄n)2 < n2c}, c >

0, where ξ̄n = 1
n

∑n
i=1 ξi. Note that

E(X|θ)(w) =
∫

R∞
x1PX∼(dx,w) ≡ Ewξ1 a.s.,

Var (X|θ)(w) =
∫

R∞
x2

1PX∼(dx,w) −
( ∫

R∞
x1PX∼(dx,w)

)2 ≡ Var wξ1 a.s.

Using the properties of regular conditional distributions, Anscombe’s Theorem
and the Bounded Convergence Theorem, for any y ∈ R,

lim
c→0

P{c−1/2(X̄tc − E(X|θ))2 ≤ y}
= lim

c→0
EPX∼({c−1/2(ξ̄sc − Ewξ1)2 ≤ y}, w)

= lim
c→0

EPX∼({( ξ̄sc − Ewξ1√
Var wξ1

sc

)2
Var wξ1√

csc
≤ y}, w)

= EFχ2
1
(

y√
Var wξ1

),

where Fχ2
1

denotes the chi-squared distribution function with one degree of free-
dom. Therefore

c−
1
2 (X̄tc − E(X|θ))2 D−→ F, (2.5)

where D−→ means weak convergence and F is the limiting distribution defined by
F (y) = EFχ2

1
( y√

Var (X|θ)
) for all y ∈ R.

In view of

c−
1
2 (X̄tc − E(X|θ))2 = (c

1
4

tc∑
i=1

(Xi − E(X|θ)))2(
√

ctc)−2, (2.6)

one obtains the uniform integrability of {c− 1
2 (X̄tc −E(X|θ))2, c > 0} by Lemmas

2.1, 2.2 and 2.3. The moment conditions are needed here.
Combining (2.5) and the uniform integrability of (2.6), we have

E(X̄tc − E(X|θ))2 =
√

cE(Var (X|θ))
1
2 + o(

√
c). (2.7)

Note that the expectation of the distribution function F is E(Var (X|θ))
1
2 .
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It is easy to see that
√

ctc −→ (Var (X|θ))
1
2 a.s.. Together with the uniform

integrability of {√ctc, c > 0} assured by Lemma 2.1, we have

E(ctc) =
√

cE(Var (X|θ))
1
2 + o(

√
c). (2.8)

Combining (2.7) and (2.8), we have

R(tc, X̄tc) = 2
√

cE(Var (X|θ))
1
2 + o(

√
c).

The proof is thus complete.

3. Application to the One-Parameter Exponential Family

Let X,X1,X2, . . . be a sequence of i.i.d. random variables with a density
function of the form

fθ(x) = exp(θx − A(θ)), x ∈ R, θ ∈ Θ,

with respect to some σ-finite measure. Here Θ denotes the natural parameter
space. It follows that Θ is an interval, finite or infinite, and we assume that A(·)
has continuous second derivatives in the interior of Θ and A′(·) 
= 0.

Let Fn = σ(X1, . . . ,Xn) for each n ≥ 1. The Bayes risk for a sequential
procedure consisting of a stopping rule t and an Ft-measurable function δt is
R(t, δt) = E((δt −A′(θ))2 + ct). We know that for any stopping rule t, the Bayes
estimator of A′(θ) is given by δt = E(A′(θ)|Ft). Then the Bayes risk of the
sequential procedure (t, E(A′(θ)|Ft)) is Rt = E(Var (A′(θ)|Ft) + ct).

Hence, finding an optimal sequential procedure for this problem is equivalent
to constructing an optimal stopping rule for the sequence {Zn, n ≥ 1}, where

Zn = Var (A′(θ)|Fn) + cn. (3.1)

Here we are interested in finding a family of stopping rules {t(c), c > 0} such
that t(·) is asymptotically pointwise optimal (A.P.O.), that is, for any stopping
rules {s(c), c > 0}, limc→0Zt(c)/Zs(c) ≤ 1 a.s..

Let
U(c) = inf{n ≥ 1 : Var (A′(θ)|Fn) < nc}, c > 0.

In view of Eζ(
∂lnfζ(X)

∂ζ )2 = 1/A′′(θ) where ζ = A′(θ), and E(Var (A′(θ)|Fn)) ≤
E(A′′(θ))/n, we know from the results in Bickel and Yahav (1967, 1968) that if
A′(θ) has a continuous bounded density with respect to the Lebesgue measure
and E(X2) is finite, then the stopping rules {U(c), c > 0} is A.P.O. with respect
to (3.1); it is also asymptotically Bayes, that is,

RU(c) = inf
s

Rs + o(
√

c) = 2
√

cE(A
′′
(θ))

1
2 + o(

√
c), (3.2)
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where the infimum extends over all Fn-stopping times s.
Note that Var (A′(θ)|Fn) and E(A′(θ)|Fn) depend on the prior distribution

of θ, which is sometimes unknown or misspecified. We would thus like to find
an alternative procedure, which does not depend on the prior distribution and
still possesses the good properties of being A.P.O. and asymptotically Bayes with
respect to a large class of priors.

From Bickel and Yahav (1967), nVar (A′(θ)|Fn) −→ Var θ(X) = A
′′
(θ) a.s..

In view of the definition of U(c) and the properties of one-parameter exponential
family, we propose the sequential procedure (tc, X̄tc), where tc is defined in (2.3).
It follows directly from Theorem 2.1 and (3.2) that (tc, X̄tc) is asymptotically
Bayes with respect to a large class of prior distributions. More precisely, we have

Theorem 3.1. Assume that Θ is bounded and closed, and A′(θ) has a continuous
bounded density with respect to the Lebesgue measure. If E|X|3p < ∞ for some
p > 1, and δc−1/4 ≤ nc = o(c−1/2) as c → 0, for some δ > 0, then the Bayes risk
of (tc, X̄tc) for estimating Eθ(X) = A′(θ) subject to the loss function (2.1) is

R(tc, X̄tc) = 2
√

cE(A
′′
(θ))

1
2 + o(

√
c)

= inf
s

R(s,E(A′(θ)|Fs)) + o(
√

c) as c → 0,

where the infimum extends over all Fn-stopping times s.
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Appendix

Proof of Lemma 2.1. On {tc ≥ nc+1}, we have
√

ctc≤2(supn≥2
1

n−1

∑n
i=1(Xi−

X̄n)2)
1
2 , c > 0. Hence

(
√

ctc)p ≤ O(1) + 2p
(

sup
n≥2

1
n − 1

n∑
i=1

(Xi − X̄n)2
) p

2 , c > 0.

The assertion now follows from Doob’s inequality and the fact that 1
n−1

∑n
i=1(Xi−

X̄n)2 is a backward martingale.
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Proof of Lemma 2.2. Let random variables θ,X,X1,X2, . . . be defined on a
probability space (Ω,F , P ). Let PX∼ : B∞×Ω → [0, 1] be a regular conditional dis-
tribution for X∼ = (X1,X2, . . .) given θ, such that for every w ∈ Ω the coordinate
random variables {ξn, n ≥ 1} in the induced probability space (R∞,B∞, PX∼(·, w))
are i.i.d..

Let sc = inf{n ≥ nc : 1
n

∑n
i=1(ξi − ξ̄n)2 < n2c}, c > 0, where ξ̄n = 1

n

∑n
i=1 ξi.

Note that E(X|θ)(w) = Ewξ1 a.s. and Var (X|θ)(w) = Var w(ξ1) a.s.. For
almost all w ∈ Ω, there exists a constant M such that the truncated random
variables ηi = (ξi∧M)∨(−M) satisfy Var w(η1) ∈ (a, b) for some 0 < a < b < ∞.
Conditions (A) and (B) are needed here. Note that

∑n
i=1(ηi − η̄n)2 ≤ ∑n

i=1(ξi −
ξ̄n)2, where η̄n = 1

n

∑n
i=1 ηi.

Define rc = inf{n ≥ nc : 1
n

∑n
i=1(ηi − η̄n)2 < n2c}, c > 0. For 0 < γ < 1,

PX∼({√crc < γ}, w) ≥ PX∼({√csc < γ}, w),

and we have

PX∼({√crc < γ
√

Var wη1}, w)

≤PX∼({1
j

j∑
i=1

(ηi − η̄j)2 < j2c, for some nc ≤ j ≤ n′
c}, w)

≤
n′

c∑
j=nc

PX∼({1
j

j∑
i=1

(ηi−η̄j)2 < j2c}, w)

=
n′

c∑
j=nc

PX∼({1
j

j∑
i=1

(Var wη1−(ηi−Ewη1)2)+(
1
j

j∑
i=1

(ηi−Ewη1))2 >Var wη1−j2c}, w)

≤
n′

c∑
j=nc

PX∼({1
j

j∑
i=1

(Var wη1−(ηi−Ewη1)2)+(
1
j

j∑
i=1

(ηi−Ewη1))2 >2εVar wη1}, w)

≤
n′

c∑
j=nc

PX∼({1
j

j∑
i=1

(Var wη1 − (ηi − Ewη1)2) > εVar wη1}, w)

+
n′

c∑
j=nc

PX∼({(1
j

j∑
i=1

(ηi − Ewη1))2 > εVar wη1}, w), (A.1)

where n′
c = [γ

√
Var wη1

c ] and the second-to-last inequality is due to the fact
that for nc ≤ j ≤ n′

c, Var wη1 − j2c ≥ Var wη1(1 − γ2) ≡ (Var wη1)2ε. For
convenience, let the first term in (A.1) be denoted by

∑n′
c

j=nc
Ij and the second

term by
∑n′

c
j=nc

IIj . Then

Ij = PX∼

({∑j
i=1(Var wη1 − (ηi − Ewη1)2)√

jVar w(η1 − Ewη1)2
>

jεVar wη1√
jVar w(η1 − Ewη1)2

}
, w

)
.
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Let dj = ess supmax1≤i≤j |Var wη1 − (ηi − Ewη1)2√
jVar w(η1 − Ewη1)2

|, which is bounded by

b+4M2√
jVar w(η1 − Ewη1)2

due to truncation. If jεVar wη1√
jVar w(η1 − Ewη1)2

dj ≤ 1, then

by an inequality on p.266 of Loeve (1977),

Ij ≤ exp
( −j2ε2(Var wη1)2

4jVar w(η1 − Ewη1)2
)
≤ exp

(
− jε2a2

64M4

)
. (A.2)

If jεVar wη1√
jVar w(η1 − Ewη1)2

dj ≥ 1, then

Ij ≤ exp
(
− jεVar wη1

4
√

jVar w(η1 − Ewη1)2

√
jVar w(η1 − Ewη1)2

b + 4M2

)

≤ exp
( −jεa

4(b + 4M2)

)
. (A.3)

Combining (A.2) and (A.3), we have

Ij ≤ exp(−k1j), (A.4)

where k1 = min{ ε2a2

64M4 , εa
4(b+4M2)}. As for the second term,

IIj = PX∼({
j∑

i=1

(ηi − Ewη1) > j
√

εVar wη1}, w)

+PX∼({
j∑

i=1

(−ηi + Ewη1) > j
√

εVar wη1}, w)

≤ exp(−k2j) + exp(−k2j) (A.5)

where k2 = min{ ε
4 ,

√
εa

8M }. The inequality in (A.5) follows from a similar argument
as for (A.4).

Let k = min{k1, k2}. Then combining (A.1), (A.4) and (A.5),

PX∼({√crc < γ
√

Var wη1}, w) ≤
n′

c∑
j=nc

3 exp(−kj)

≤
n′

c∑
j=nc

3 exp(−kδc−
1
4 ) ≤ 3γ

√
Var wη1

c
exp(−kδc−

1
4 )

≤ 3γ
√

bc−
1
2 exp(−kδc−

1
4 ). (A.6)

The second and the third inequalities are from the definition of nc and n′
c respec-

tively.
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In order to obtain the uniform integrability of {(√ctc)−p, c > 0}, we need to
show that for 0 < γ < 1, P{√ctc < γ} = o(c

p
2 ) (see Lemma 1 of Chow and Yu

(1981)).

P{√ctc < γ
√

a} =
∫
Ω

PX∼({√csc < γ
√

a}, w)dP (w)

≤
∫
Ω

PX∼({√csc < γ
√

Var wη1}, w)dP (w)

≤
∫
Ω

PX∼({√crc < γ
√

Var wη1}, w)dP (w)

≤ O(1)
∫

Ω
c−

1
2 exp(−kδc−

1
4 )dP (w) = o(c

p
2 ). (A.7)

The last inequality in (A.7) follows from (A.6). The proof is thus complete.

Proof of Lemma 2.3. For convenience, let Wn(θ) = h(Xn, θ) − E(h(X, θ)|θ).
Let s′c = sc ∧ N , where N = [Kc−

1
2 ] for K ≥ 1. For any δ > 0, there ex-

ists a positive constant K1 such that E|Yn|p < δ for all n ≥ 1, where Yn =
Wn(θ)1{|Wn(θ)|≥K1}−E(Wn(θ)1{|Wn(θ)|≥K1}|θ). Put Fo = σ(θ), Fn =σ(θ,X1, . . . ,

Xn), n ≥ 1, and

Zn = Wn(θ) − Yn = Wn(θ)1{|Wn(θ)|<K1} − E(Wn(θ)1{|Wn(θ)|<K1}|θ).

Note that E(Yn+1|Fn) = E(Yn+1|θ) = 0 for all n ≥ 0, and sc and s′c are
σ(θ,X1, . . . ,Xn) - stopping rules. Then {∑n

i=1 Yi1{s′c≥i}, n ≥ 1}, {∑n
i=1 Zi1{s′c≥i},

n ≥ 1} and {∑n
i=N+1 Wi(θ)1{sc≥i}, n ≥ N + 1} are Fn-martingales. Using

Burkholder, Davis and Gundy’s inequality (1972) (see p.409 of Chow and Te-
icher (1988)) and Jensen’s inequality, we have for some constant A > 0,

E|
s′c∑

i=1

Yi|p ≤ AE(
∞∑

i=1

E(Y 2
i 1{s′c≥i}|Fi−1))p/2 + AE(sup

i≥1
|Yi|1{s′c≥i})p

≤ AE(
∞∑

i=1

1{s′c≥i}E(Y 2
i |θ))p/2 + AE(

N∑
i=1

|Yi|p1{s′c≥i})

= AE(s′cE(Y 2
1 |θ))p/2 + AE(

N∑
i=1

1{s′c≥i}E(|Yi|p|Fi−1))

≤ AE((s′c)
p/2E(|Y1|p|θ)) + AE(s′cE(|Y1|p|θ))

≤ 2ANp/2E|Y1|p ≤ 2ANp/2δ.

Hence

sup
c>0

E|c1/4
s′c∑

i=1

Yi|p ≤ 2AKp/2δ = o(1) as δ → 0. (A.8)
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Similarly,

E|
s′c∑

i=1

Zi|p+1 ≤ AE(
∞∑

i=1

E(Z2
i 1{s′c≥i}|Fi−1))

p+1
2 + AE(sup

i≥1
|Zi|1{s′c≥i})p+1

≤ 2AE((s′c)
p+1
2 E(|Z1|p+1|θ)) ≤ 2AN

p+1
2 E|Z1|p+1.

Then

sup
c>0

E|c1/4
s′c∑

i=1

Zi|p+1 ≤ 2A(2K1)p+1K
p+1
2 < ∞. (A.9)

From (A.8) and (A.9), |c1/4 ∑s′c
i=1 Wi(θ)|p is uniformly integrable. Similar to

(A.8), by Burkholder, Davis and Gundy’s (1972), Jensen’s and Hölder’s inequal-
ities, we have

E|
∞∑

i=N+1

Wi(θ)1{sc≥i}|p ≤ 2AE((
∞∑

i=N+1

1{sc≥i})p/2E(|W1(θ)|p|θ))

≤ 2AE1/a|W1(θ)|paE1/b|
∞∑

i=N+1

1{sc≥i}|pb/2.

Theorefore,

sup
c>0

E|c1/4
∞∑

i=N+1

Wi(θ)1{sc≥i}|p

≤ 2AE1/a|W1(θ)|pa(sup
c>0

∫
{√csc>K}

(
√

csc)pb/2dP )1/b

= o(1) as K → ∞. (A.10)

The last equality follows from the assumptions. Write

sc∑
i=1

Wi(θ) =
s′c∑

i=1

Wi(θ) +
∞∑

i=N+1

Wi(θ)1{sc≥i} (A.11)

The lemma now follows from (A.10) and (A.11).
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